Diketahui f(x) = 5^3x+1 dan g(t) = log5t. Jika (f^-1 o g ^-1) (p) = 2 maka nilai p ?
Matematika
febripertiwi28
Pertanyaan
Diketahui f(x) = 5^3x+1 dan g(t) = log5t. Jika (f^-1 o g ^-1) (p) = 2 maka nilai p ?
1 Jawaban
-
1. Jawaban DB45
fungsi komposisi dan invers
f(x)= 5³ˣ⁺¹ --> f(p)= 5^(3p+1)
g(t)= log 5t--> g(p) = log 5p
gof (p) = g { f(p)} = g{5^(3p+1)}
gof (p) = log 5.5^(3p+1) = log 5^(3p+1+1)
gof(p) = log 5^(3p+2)
f⁻¹og⁻¹ (p) = 2 -> (gof)⁻¹(p) = 2 --> (gof)(2)= p
log 5^(8) = p
p = 8 log 5